Previous Page  124 / 161 Next Page
Information
Show Menu
Previous Page 124 / 161 Next Page
Page Background

Sýnidæmi 9

Sýnidæmi 10

Þú getur gengið

úr skugga um að

þú hafir þáttað

rétt með því að

margfalda aftur inn

í svigann.

2

ab

(

a

− 2

b

) =

2

a

2

b

− 4

ab

2

Skali 3A

122

Þáttaðu stæðurnar.

a

2

a

2

b

− 4

ab

2

b

a

2

b

3

+

a

3

b

2

Tillaga að lausn

Mundu að þegar þú átt að þátta stæðu sem hefur fleiri en einn lið

er ekki ætlast til að þú þáttir hvern lið fyrir sig. Þú átt að leita að

þáttum sem eru sameiginlegir fyrir alla liðina og taka þá út fyrir sviga.

a

Þegar þú þáttar hvorn lið fyrir sig sérðu að 2

ab

er

sameiginlegur þáttur í báðum liðunum.

Stæðuna má þátta þannig:

2

a

2

b

− 4

ab

2

=

2

·

a

·

a

·

b

− 2

·

2 · a · b · b

=

2

ab

(

a

− 2

b

)

b

Þú sérð að

a

2

b

2

er sameiginlegur þáttur í báðum liðunum án

þess að þurfa fyrst að þátta hvern lið eins og gert er í a-lið.

Stæðuna má þátta þannig:

a

2

b

3

+

a

3

b

2

=

a

2

b

2

(

b

+

a

)

Þáttaðu stæðurnar og finndu minnsta sameiginlega margfeldið (msm.)

4

ab

− 2

a

2

4

b

− 2

a

Tillaga að lausn

Fyrri stæðuna má þátta þannig:

4

ab

− 2

a

2

= 2

a

(2

b

a

)

Síðari stæðuna má þátta þannig:

4

b

− 2

a

= 2(2

b

a

)

Við þurfum að hafa liðastærð sem þátt þannig að báðar stæðurnar gangi

upp í minnsta sameiginlega margfeldið. Niðurstaðan er:

msm 2

a

(2

b

a

)